Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Cardiovasc Res ; 119(5): 1190-1201, 2023 05 22.
Article in English | MEDLINE | ID: covidwho-2188640

ABSTRACT

AIMS: Previous analyses on sex differences in case fatality rates at population-level data had limited adjustment for key patient clinical characteristics thought to be associated with coronavirus disease 2019 (COVID-19) outcomes. We aimed to estimate the risk of specific organ dysfunctions and mortality in women and men. METHODS AND RESULTS: This retrospective cross-sectional study included 17 hospitals within 5 European countries participating in the International Survey of Acute Coronavirus Syndromes COVID-19 (NCT05188612). Participants were individuals hospitalized with positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from March 2020 to February 2022. Risk-adjusted ratios (RRs) of in-hospital mortality, acute respiratory failure (ARF), acute heart failure (AHF), and acute kidney injury (AKI) were calculated for women vs. men. Estimates were evaluated by inverse probability weighting and logistic regression models. The overall care cohort included 4499 patients with COVID-19-associated hospitalizations. Of these, 1524 (33.9%) were admitted to intensive care unit (ICU), and 1117 (24.8%) died during hospitalization. Compared with men, women were less likely to be admitted to ICU [RR: 0.80; 95% confidence interval (CI): 0.71-0.91]. In general wards (GWs) and ICU cohorts, the adjusted women-to-men RRs for in-hospital mortality were of 1.13 (95% CI: 0.90-1.42) and 0.86 (95% CI: 0.70-1.05; pinteraction = 0.04). Development of AHF, AKI, and ARF was associated with increased mortality risk (odds ratios: 2.27, 95% CI: 1.73-2.98; 3.85, 95% CI: 3.21-4.63; and 3.95, 95% CI: 3.04-5.14, respectively). The adjusted RRs for AKI and ARF were comparable among women and men regardless of intensity of care. In contrast, female sex was associated with higher odds for AHF in GW, but not in ICU (RRs: 1.25; 95% CI: 0.94-1.67 vs. 0.83; 95% CI: 0.59-1.16, pinteraction = 0.04). CONCLUSIONS: Women in GW were at increased risk of AHF and in-hospital mortality for COVID-19 compared with men. For patients receiving ICU care, fatal complications including AHF and mortality appeared to be independent of sex. Equitable access to COVID-19 ICU care is needed to minimize the unfavourable outcome of women presenting with COVID-19-related complications.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , Female , Male , COVID-19/complications , COVID-19/therapy , SARS-CoV-2 , Retrospective Studies , Sex Characteristics , Cross-Sectional Studies , Risk Factors , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy
3.
Nat Rev Cardiol ; 19(7): 475-495, 2022 07.
Article in English | MEDLINE | ID: covidwho-1632773

ABSTRACT

Coronavirus disease 2019 (COVID-19) predisposes patients to thrombotic and thromboembolic events, owing to excessive inflammation, endothelial cell activation and injury, platelet activation and hypercoagulability. Patients with COVID-19 have a prothrombotic or thrombophilic state, with elevations in the levels of several biomarkers of thrombosis, which are associated with disease severity and prognosis. Although some biomarkers of COVID-19-associated coagulopathy, including high levels of fibrinogen and D-dimer, were recognized early during the pandemic, many new biomarkers of thrombotic risk in COVID-19 have emerged. In this Consensus Statement, we delineate the thrombotic signature of COVID-19 and present the latest biomarkers and platforms to assess the risk of thrombosis in these patients, including markers of platelet activation, platelet aggregation, endothelial cell activation or injury, coagulation and fibrinolysis as well as biomarkers of the newly recognized post-vaccine thrombosis with thrombocytopenia syndrome. We then make consensus recommendations for the clinical use of these biomarkers to inform prognosis, assess disease acuity, and predict thrombotic risk and in-hospital mortality. A thorough understanding of these biomarkers might aid risk stratification and prognostication, guide interventions and provide a platform for future research.


Subject(s)
COVID-19 , Thrombosis , Biomarkers , COVID-19/complications , Humans , Pandemics , SARS-CoV-2 , Thrombosis/diagnosis , Thrombosis/etiology
4.
Cardiovasc Res ; 117(14): 2705-2729, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1411978

ABSTRACT

The cardiovascular system is significantly affected in coronavirus disease-19 (COVID-19). Microvascular injury, endothelial dysfunction, and thrombosis resulting from viral infection or indirectly related to the intense systemic inflammatory and immune responses are characteristic features of severe COVID-19. Pre-existing cardiovascular disease and viral load are linked to myocardial injury and worse outcomes. The vascular response to cytokine production and the interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and angiotensin-converting enzyme 2 receptor may lead to a significant reduction in cardiac contractility and subsequent myocardial dysfunction. In addition, a considerable proportion of patients who have been infected with SARS-CoV-2 do not fully recover and continue to experience a large number of symptoms and post-acute complications in the absence of a detectable viral infection. This conditions often referred to as 'post-acute COVID-19' may have multiple causes. Viral reservoirs or lingering fragments of viral RNA or proteins contribute to the condition. Systemic inflammatory response to COVID-19 has the potential to increase myocardial fibrosis which in turn may impair cardiac remodelling. Here, we summarize the current knowledge of cardiovascular injury and post-acute sequelae of COVID-19. As the pandemic continues and new variants emerge, we can advance our knowledge of the underlying mechanisms only by integrating our understanding of the pathophysiology with the corresponding clinical findings. Identification of new biomarkers of cardiovascular complications, and development of effective treatments for COVID-19 infection are of crucial importance.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , COVID-19/etiology , COVID-19/physiopathology , COVID-19/therapy , Cardiometabolic Risk Factors , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/physiopathology , Clinical Trials as Topic , Humans , Inflammation/complications , Inflammation/virology , Microcirculation , Sex Characteristics , Post-Acute COVID-19 Syndrome
5.
Cardiovasc Res ; 117(8): 1814-1822, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1301347

ABSTRACT

2020 has been an extraordinary year. The emergence of COVID-19 has driven urgent research in pulmonary and cardiovascular science and other fields. It has also shaped the way that we work with many experimental laboratories shutting down for several months, while bioinformatics approaches and other large data projects have gained prominence. Despite these setbacks, vascular biology research is stronger than ever. On behalf of the European Society of Cardiology Council for Basic Cardiovascular Science (ESC CBCS), here we review some of the vascular biology research highlights for 2020. This review is not exhaustive and there are many outstanding vascular biology publications that we were unable to cite due to page limits. Notwithstanding this, we have provided a snapshot of vascular biology research excellence in 2020 and identify topics that are in the ascendency and likely to gain prominence in coming years.


Subject(s)
COVID-19/diagnosis , Extracellular Traps/physiology , Neutrophils/cytology , Smartphone , Computational Biology , Humans , SARS-CoV-2/pathogenicity
6.
Cardiovasc Res ; 117(8): 1823-1840, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1174897

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been as unprecedented as unexpected, affecting more than 105 million people worldwide as of 8 February 2020 and causing more than 2.3 million deaths according to the World Health Organization (WHO). Not only affecting the lungs but also provoking acute respiratory distress, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is able to infect multiple cell types including cardiac and vascular cells. Hence a significant proportion of infected patients develop cardiac events, such as arrhythmias and heart failure. Patients with cardiovascular comorbidities are at highest risk of cardiac death. To face the pandemic and limit its burden, health authorities have launched several fast-track calls for research projects aiming to develop rapid strategies to combat the disease, as well as longer-term projects to prepare for the future. Biomarkers have the possibility to aid in clinical decision-making and tailoring healthcare in order to improve patient quality of life. The biomarker potential of circulating RNAs has been recognized in several disease conditions, including cardiovascular disease. RNA biomarkers may be useful in the current COVID-19 situation. The discovery, validation, and marketing of novel biomarkers, including RNA biomarkers, require multi-centre studies by large and interdisciplinary collaborative networks, involving both the academia and the industry. Here, members of the EU-CardioRNA COST Action CA17129 summarize the current knowledge about the strain that COVID-19 places on the cardiovascular system and discuss how RNA biomarkers can aid to limit this burden. They present the benefits and challenges of the discovery of novel RNA biomarkers, the need for networking efforts, and the added value of artificial intelligence to achieve reliable advances.


Subject(s)
Artificial Intelligence/economics , Biomarkers/analysis , COVID-19/diagnosis , RNA/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular System/virology , Humans , Quality of Life , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL